Home
Class 12
MATHS
If the vertices of an equilateral triang...

If the vertices of an equilateral triangle are situated at `z=0, z=z_1 and z=z_2` then which of the following is(are) true? (A) `|z_1|=|z_2|` (B) `|z_1+z_2|=|z_1|+|z_2|` (C) `|z_1-z_2|=|z_1|` (D) |argz_1-argz_2|= `pi/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the vertices of an equilateral triangle are situated at z=0,z=z_(1),z=z_(2) .then which of the following is/are true

If z_1 and z_2 two non zero complex numbers such that |z_1+z_2|=|z_1| then which of the following may be true (A) argz_1-argz_2=0 (B) argz_1-argz_2=pi (C) |z_1-z_2|=||z_1|-|z_2|| (D) argz_1-argz_2=4pi

If Z_(1)=1+i and Z_(2)=2+2i , then which of the following is not true. (A) |z_(1)z_(2)|=|z_(1)||z_(2)| (B) |z_(1)+z_(2)|=|z_(1)|+|z_(2)| (C) |z_(1)-z_(2)|=|z_(1)|-|z_(2)| (D) |(z_(1))/(z_(2))|=(|z_(1)|)/(|z_(2)|)

Prove that |z_1+z_2|^2+|z_1-z_2|^2 =2|z_1|^2+2|z_2|^2 .

| z_ (1) + z_ (2) | = | z_ (1) | - | z_ (2) |, thenarg z_ (1) -argz_ (2) =

If z_1ne-z_2 and |z_1+z_2|=|1/z_1 + 1/z_2| then :

Which of the following are correct for any two complex numbers z_1 and z_2? (A) |z_1z_2|=|z_1||z_2| (B) arg(|z_1 z_2|)=(argz_1)(arg,z_2) (C) |z_1+z_2|=|z_1|+|z_2| (D) |z_1-z_2|ge|z_1|-|z_2|

If |z_1+z_2| = |z_1-z_2| , prove that amp z_1 - amp z_2 = pi/2 .

If z_(1),z_(2),z_(3) are vertices of an equilateral triangle inscribed in the circle |z|=2 and if z_(1)=1+iota sqrt(3), then