Home
Class 12
MATHS
If a and b are two real number lying bet...

If a and b are two real number lying between 0 and 1 such that `z_1=a+i, z_2=1+bi and z_3=0` form anequilateral trilangle , then (A) `a=2+sqrt(3)` (B) `b=4-sqrt(3)` (C) `a=b=2-sqrt(3)` (D) `a=2,b=sqrt(3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a and b are two real number lying between 0 and 1 such that z_1=a+i, z_2=1+bi and z_3=0 form an equilateral triangle , then (A) a=2+sqrt(3) (B) b=4-sqrt(3) (C) a=b=2-sqrt(3) (D) a=2,b=sqrt(3)

If a=sqrt(2-sqrt(3) & b=sqrt(2+sqrt(3)) ,then (A) a+b=sqrt(6) (B) a-b=sqrt(2) (C) a+b=-sqrt(6) (D) a-b=-sqrt(2)

Let z_1 and z_2 be theroots of the equation z^2+az+b=0 z being complex. Further, assume that the origin z_1 and z_2 form an equilateral triangle then (A) a^2=4b (B) a^2=b (C) a^2=2b (D) a^2=3b

The rationalisation factor of sqrt(3) is -sqrt(3) (b) (1)/(sqrt(3))(c)2sqrt(3)(d)-2sqrt(3)

If |z-4/z|=2 then the greatest value of |z| is (A) sqrt(5)-1 (B) sqrt(5)+1 (C) sqrt(5) (D) 2

If |z-4/2z|=2 then the least of |z| is (A) sqrt)5)=-1 (B) sqrt(5)-2 (C) sqrt(5) (D) 2

If z_1, z_2 and z_3 , are the vertices of an equilateral triangle ABC such that |z_1 -i| = |z_2 -i| = |z_3 -i| .then |z_1 +z_2+ z_3| equals to : a) 3sqrt(3) b) sqrt(3) c) 3 d) 1/(3sqrt(3))

sqrt((4)/(3))-sqrt((3)/(4))=?(4sqrt(3))/(6) (b) (1)/(2sqrt(3))(c)1(d)-(1)/(2sqrt(3))