Home
Class 12
MATHS
If |z-4/2z|=2 then the least of |z| is (...

If `|z-4/2z|=2` then the least of `|z|` is (A) `sqrt)5)=-1` (B) `sqrt(5)-2` (C) `sqrt(5)` (D) 2

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z-4/z|=2 then the greatest value of |z| is (A) sqrt(5)-1 (B) sqrt(5)+1 (C) sqrt(5) (D) 2

If |z-4+3i|le3, then the least value of |z|= (A) 2 (B) 3 (C) 4 (D) 5

If |z-(4)/(z)|=2, then the maximum value of |Z| is equal to (1)sqrt(3)+1 (2) (3) 2(4)quad 2+sqrt(2)

I |z|ge5 then the least value of |z+ 2/z| is (A) 23/5 (B) 24/5 (C) 5 (D) none of these

[ If N=(sqrt(sqrt(5)+2)+sqrt(sqrt(5)-2))/(sqrt(sqrt(5)+1))-sqrt(3-2sqrt(2)) then N equals [ (A) 1, (B) 2sqrt(2)-1 (C) (sqrt(5))/(2), (D) (2)/(sqrt(sqrt(5)+1))]]

If |z^(2)-3|=3|z|, then the maximum value of |z| is a.1b.(3+sqrt(21))/(2)c.(sqrt(21)-3)/(2)d .none of these

Let z_1=6+i and z_2=4-3i . If z is a complex number such thar arg ((z-z_1)/(z_2-z))= pi/2 then (A) |z-(5-i)=sqrt(5) (B) |z-(5+i)=sqrt(5) (C) |z-(5-i)|=5 (D) |z-(5+i)|=5

Let the complex numbers z of the form x+iy satisfy arg ((3z-6-3i)/(2z-8-6i))=pi/4 and |z-3+i|=3 . Then the ordered pairs (x,y) are (A) (4- 4/sqrt(5), 1+2/sqrt(5)) (B) (4+5/sqrt(5),1-2/sqrt(5)) (C) (6-1) (D) (0,1)

If a and b are two real number lying between 0 and 1 such that z_1=a+i, z_2=1+bi and z_3=0 form an equilateral triangle , then (A) a=2+sqrt(3) (B) b=4-sqrt(3) (C) a=b=2-sqrt(3) (D) a=2,b=sqrt(3)

Length of perpendicular from z_(0)=2+3i on the straight line (1-2i)z+(1+2i)bar(z)+3=0 A) 18/(2sqrt(5)) B) 18/(sqrt(5)) C) 19/(sqrt(5)) D) 19/(2sqrt(5))