Home
Class 12
MATHS
Let the center of the circle represented...

Let the center of the circle represented by `zbarz-(2+3i)z-(2-3i)barz+9=0' be (x,y), ` then the value of `x^2+y^2+xy` is

Promotional Banner

Similar Questions

Explore conceptually related problems

The center of the circle . zbarz+(1+i)z +(1+i)barz-7=0 are respectively.

If 2x+3y=8 and xy=2, find the value of 4x^(2)+9y^(2)

Find the center and radius of the circle 2zbarz+(3-i)z+(3+i)z-7=0," where " i=sqrt(-1).

If x^(2) + y^(2) -3xy = 0 and x gt y then find the value of log_(xy)(x-y) .

If x:y =2 :3 then the value of {:(3x+2y)/(9x+5y):} will be:

If (x-3)^(2) + (y-5)^(2) + (z-4)^(2) = 0, then the value of (x^2)/(9) + (y^2)/(25) + (z^2)/(16) is

If x + y + z = 0 , then the value of (x^2)/(yz) + (y^2)/(zx) + (z^2)/(xy) is: