Home
Class 12
MATHS
If iz^3+z^2-z+i=0, then show that |z|=1...

If `iz^3+z^2-z+i=0`, then show that `|z|=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that if iz^(3)+z^(2)-z+i=0, then |z|=1

If 8iz^3+12z^2-18z+27i=0, then (a). |z|=3/2 (b). |z|=2/3 (c). |z|=1 (d). |z|=3/4

If iz^(3) + z^(2) - z + I = 0 , then |z| =_______

If z=2-3i, then show that z^(2)-4z+13=0 .

If (1+i)z=(1-i)phi z, then show that z=-iz

Let z_(1), z_(2), z_(3) be the roots of iz^(3) + 5z^(2) - z + 5i = 0 , then |z_(1)| + |z_(2)| + |z_(3)| = _____________.

If z=x+iy and w=(1-iz)/(z-i), then show that |w|1hat boldsymbol varphi_(z) is purely real.

If z=3-5i , then show that z^(3)-10z^(2)+58z-136=0