Home
Class 12
MATHS
For positive integer n1,n2 the value of ...

For positive integer `n_1,n_2` the value of the expression `(1+i)^(n1) +(1+i^3)^(n1) (1+i^5)^(n2) (1+i^7)^(n_20),` where `i=sqrt-1,` is a real number if and only if (a) `n_1=n_2+1` (b) `n_1=n_2-1` (c) `n_1=n_2` (d) `n_1 > 0, n_2 > 0`

Promotional Banner

Similar Questions

Explore conceptually related problems

For a positive integer n, find the value of (1-i)^(n)(1-(1)/(i))^(n)

The expression (1+i)^(n_1)+(1+i^(3))^(n_(2)) is real iff

The expression ((1+i)^(n))/((1-i)^(n-2)) equals

The value of i^(2n)+i^(2n+1)+i^(2n+2)+i^(2n+3), where i=sqrt(-1), is

If n_(1),n_(2) are positive integers,then (1+i)^(n_(1))+(1+i^(3))^(n_(1))+(1+i_(5))^(n_(2))+(1+i^(7))^(n_(2)) is real if and only if :

Find the integral values of n for the equations : (a) (1+i)^(n)=(1-i)^(n) (b) (1-i)^(n)=2^(n)

If n is any positive integer,write the value of (i^(4n+1)-i^(4n-1))/(2)