Home
Class 12
MATHS
The shaded region, where P=(-1,0),Q=(-1+...

The shaded region, where `P=(-1,0),Q=(-1+sqrt(2),sqrt(2))R=(-1+sqrt(2),-sqrt(2),S=(1,0)` is represented by Figure `|z+1|>2,|a r g(z+1)2,|a r g(z+1)>>pi/4` `|z+1|<<2,|a r g(z+1)>pi/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

The shaded region ,where P=(-1 ,0)Q=(-1 + sqrt(2),sqrt(2)) R=(-1+sqrt(2),-sqrt(2)),S=1(1,0) is represent by

The equation z((2+1+i sqrt(3))/(z+1+i sqrt(3)))+bar(z)(z+1+i sqrt(3))=0 represents a circle with

Prove that : tan^(-1) [ (sqrt(1+z) +sqrt(1-z))/(sqrt(1+z) -sqrt(1-z))] = pi/4 +1/2 cos^(-1) z

The equation z^(2)-i|z-1|^(2)=0, where i=sqrt(-1), has.

If |z-4/z|=2 then the greatest value of |z| is (A) sqrt(5)-1 (B) sqrt(5)+1 (C) sqrt(5) (D) 2

If z=pi/4(1+i)^4((1-sqrt(pi)i)/(sqrt(pi)+i)+(sqrt(pi)-i)/(1+sqrt(pi)i)),then"((|z|)/(a m p(z))) equal

If z+sqrt(2)|z+1|+i=0 and z=x+iy then

If z=((1+i sqrt(3))^(2))/(4i(1-i sqrt(3))) is a complex number then a.arg(z)=(pi)/(4) b.arg(z)=(pi)/(2)c|z|=(1)/(2)d.|z|=2

If |z_(1)|=2,(1-i)z_(2)+(1+i)bar(z)_(2)=8sqrt(2) , ( z_(1),z_(2) are complex variables) then the minimum value of |z_(1)-z_(2)| ,is

What is locus of z if z-1-sin^(-1)((1)/(sqrt(3)))|+|z+cos^(-1)((1)/(sqrt(3)))-(pi)/(2)|=1?