Home
Class 12
MATHS
If alpha,beta are the roots of the equat...

If `alpha,beta` are the roots of the equation `ax^2+bx+c=0 and S_n=alpha^n+beta^n`, show that `aS_(n+1)+bS_n+cS_(n-1)=0` and hence find `S_5`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha,beta are the roots of the equation ax^(2)+bx+c=0 and S_(n)=alpha^(n)+beta^(n), then a S_(n+1)+cS_(n)-1)=

If alpha , beta are the roots of the equation ax^(2)+bx+c=0 and S_(n)=alpha^(n)+beta^(n) , then aS_(n+1)+bS_(n)+cS_(n-1)=(n ge 2)

If alpha and beta are the roots of the equation ax^(2)+bx+b=0 and S_(n)=alpha^(n)+beta^(n), then aS_(n+1)+bS_(n)+cS_(n-1)=

If alpha and beta are the roots of the equation x^(2)-ax+b=0 and A_(n)=alpha^(n)+beta^(n)

If alpha and beta are the roots of the equation x^(2)-ax-ax+b=0 and v_(n)=alpha^(n)=beta^(n) , show that v_(n+1)=av_(n)-bv_(n-1) and hence obtain the value of alpha^(5)+beta^(5) .

If alpha and beta are the roots of ax^(2)+bx+c=0andS_(n)=alpha^(n)+beta^(n), then aS_(n+1)+bS_(n)+cS_(n-1)=0 and hence find S_(5)

If alpha, beta are the roots of the equation ax^(2)+bx+c=0 and A_(n)=alpha^(n)+beta^(n) , then aA_(n+2)+bA_(n+1)+cA+(n) is equal to

Let alpha and beta be the roots of the equation x^(2) -px+q =0 and V_(n) = alpha^(n) + beta^(n) , Show that V_(n+1) = pV_(n) -qV_(n-1) find V_(5)