Home
Class 12
MATHS
If P(x)=x^2+ax+b and Q(x)=x^2+a1x+b1,a,b...

If `P(x)=x^2+ax+b and Q(x)=x^2+a_1x+b_1,a,b,a_1,b_1 epsilon R` and equation `P(x).Q(x)=0` has at most one real root, then (A) `(1+a+b)(1+a_1+b_1)gt0` (B) `(1+a+b)(1+a_1+b_1)lt0` (C) `(1+a+b)/(1+a_1_b_1)gt0` (D) `1+a+bgt0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If P(x)=x^(2)+ax+b and Q(x)=x^(2)+a_(1)x+b_(1),a,b,a_(1),b_(1),in R and equation P(x).Q(x) has at most one real root,then

If b gt a , then the equation (x-a)(x-b)-1=0 , has

If b gt a , then the equation (x-a)(x-b) - 1 = 0 has,

If the points (a,b),(a_1,b_10 and (a-a_1,b-b_1) are collinear, show that a/a_1=b/b_1

If the points (a, b), (a_1, b_1) and (a-a_1 , b-b) are collinear, show that a/a_1 = b/b_1

If the equation x^(2)+bx-a=0 and x^(2)-ax+b=0 have a common root,then a.a +b=0 b.a=b c.a-b=1 d.a+b=1

If x^(2)+3x+3=0 and ax^(2)+bx+1=0 ,a,b in Q have a common root,then value of (3a +b) is equal to : (A) (1)/(3) (B) 1 (C) 2 (D) 4

Show that one of the roots of equation ax^2+bx+c=0 may be reciprocal of one of the roots of a_1x^2+b_1x+c_1=0 if (aa_1-c c_1)^2=(bc_1-ab_1)(b_1c-a_1b)