Home
Class 12
MATHS
If the roots of the equation ax^2+bx+c=0...

If the roots of the equation `ax^2+bx+c=0` be in the ratio m:n, prove that `sqrt(m/n)+sqrt(n/m)+b/sqrt(ac)=0`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If the roots of the equation ax^(2)+bx+c=0 are in the ratio m:n then

If the ratios of the roots of the equation lx^(2)+nx+n=0 are in the ratio p:q,then prove that sqrt((p)/(q))+sqrt((q)/(p))+sqrt((n)/(l))=0

If the roots of the equation lx^(2)+nx+n=0 be in the ratio p: q: then sqrt((p)/(q))+sqrt((q)/(p))+sqrt((n)/(l))=?

If the ratio of the roots of the equation ax^2+ bx+c=0 is m:n then (i) m/n+n/m=b^2/(ac) (ii) sqrt(m/n)+sqrt(n/m)=sqrt(b^2/(ac)) (iii) sqrt(m/n)+sqrt(n/m)=(b^2/(ac)) (iv) m/n+n/m=a^2/b^2

if the ratio of the roots of the quadratic equation px^(2)+qx+q=0 be m:n, then show that sqrt((m)/(n))+sqrt((n)/(m))+sqrt((q)/(p))=0

If the roots of lx^(2)+nx+n=0 be in the ratio of p:q prove that sqrt((p)/(q))+sqrt((q)/(p))+sqrt((n)/(l))=0

If the ratio of the roots of the equation lx^(2)+nx+n=0 is p:q prove that sqrt((p)/(q))+sqrt((q)/(p))+sqrt((n)/(l))=0

If a,b,c real in G.P.then the roots of the equation ax^(2)+bx+c=0 are in the ratio (1)/(2)(-1+sqrt(3)) b.(1)/(2)(1-i sqrt(3)) c.(1)/(2)(-1-i sqrt(3)) d.(1)/(2)(1+i sqrt(3))