Home
Class 12
MATHS
If sinthetaand costheta are the roots of...

If `sinthetaand costheta` are the roots of the equation `ax^2+bx+c=0`, then (A) `(a-c)^2=b^2+c^2` (B) `(a+c)^2=b^2-c^2` (C) `a^2=b^2-2ac` (D) `a^2+b^2-2ac=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If sinthetaand costheta are the roots of the equation ax^2-bx+c=0 , show that : a^2+2ac-b^2=0 .

If sintheta and costheta are roots of the equation ax^(2)+bx+c=0 , prove that a^(2)-b^(2)+2ac=0 .

If sin alpha and cos alpha are the roots of the equation ax^(2)+bx+c=0 then prove that a^(2)+2ac=b^(2)

If sinalpha and cosalpha are the roots of the equation a x^2+b x+c=0 , then b^2= a^2-2a c (b) a^2+2a c (c) a^2-a c (d) a^2+a c

If the roots of the equation ax^2+bx+c=0 differ by K then b^(2)-4ac=

If sin theta,cos theta be the roots of ax^(2)+bx+c=0, then prove that b^(2)=a^(2)+2ac.

If alpha,beta are the roots of the equation ax^(2)+bx+c=0, then prove that (alpha)/(beta)+(beta)/(alpha)=(b^(2)-2ac)/(ac)

If one root of the equation ax^(2)+bx+c=0 is two xx the other,then b^(2):ac=?