Home
Class 12
MATHS
Let (y^2-5y+3)(x^2+x+1)lt2x for all xeps...

Let `(y^2-5y+3)(x^2+x+1)lt2x` for all `xepsilonR` then the interval in which y lies is (A) `((5-sqrt(5))/2,(5+sqrt(5))/2)` (B) `(-oo,-2]` (C) `[-2,-2/3]` (D) `(1,4)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If (y^(2)-5y+3)(x^(2)+x+1)<2x for all x in R, then fin the interval in which y lies.

For all 'x',x^(2)+2ax+(10-3a)>0, then the interval in which 'a' lies is (a)a 5(d)2

Find x and y if: ((3)/(sqrt(5))x-5)+i2sqrt(5)y=sqrt(2)

The length of the tangent of the curve y=x^(2)+2 at (1, 3) is (A) sqrt(5) (B) 3sqrt(5) (C) 3/2 (D) (3sqrt(5))/(2)

The length of the tangent of the curve y=x^(2)+2 at (1 3) is (A) sqrt(5) (B) 3sqrt(5) (C) 3/2 (D) (3sqrt(5))/(2)

The length of the tangent of the curve y=x^(2)+2 at (1, 3) is (A) sqrt(5) (B) 3sqrt(5) (C) (3)/(2) (D) (3sqrt(5))/(2)

If x=((sqrt(5)-2))/(sqrt(5)+2) and y=(sqrt(5)+2)/(sqrt(5)-2) find (i)

If x=5+2sqrt(6), then sqrt((x)/(2))-(1)/(sqrt(2x))= (a) 1 (b) 2 (c) 3 (d) 4

The distance between the parallel lnes y=2x+4 and 6x-3y-5 is (A) 1 (B) 17/sqrt(3) (C) 7sqrt(5)/15 (D) 3sqrt(5)/15

If x=sqrt(5)+2, then x-(1)/(x) equals 2sqrt(5)(b)4 (c) 2 (d) sqrt(5)