Home
Class 12
MATHS
Tet alpha, beta and gamma be the roots o...

Tet `alpha, beta and gamma` be the roots of `f(x) = x^3 + x^2 - 5x - 1 = 0.` Then `[alpha] + [beta] + [gamma],` where [*] greatest integer function, is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let alpha,beta and gamma be the roots of equation f(x)=0 , where f(x)=x^3+x^2-5x-1=0 . then the value of |[alpha]+[beta]+[gamma]|, where [.] denotes the integer function, is equal to

If alpha beta gamma are the roots of x^3+x^2-5x-1=0 then alpha+beta+gamma is equal to

If alpha ,beta ,gamma are roots of x^(3)+x^(2)-5x-1=0 then [alpha] + [beta] +[ gamma ] is equal to

If alpha beta gamma are roots of x^(3)+x^(2)-5x-1=0 then alpha + beta + gamma is equal to

If f(x)=0 is a cubic equation with positive and distinct roots alpha, beta, gamma such that beta is H.M .of the roots of f'(x)=0 .If K= [(2 beta)/(alpha+gamma)] where [.] represents greatest integer function then find sum_(i=K)^(5)(2)^(K)

If alpha,beta,gamma are the roots of x^(3)+2x^(2)-3x-1=0 then alpha^(-2)+beta^(-2)+gamma^(-2)=

if alpha,beta,gamma are the roots of 2x^(3)-5x^(2)-14x+8=0 then find alpha+beta+gamma

If alpha,beta,gamma are the roots of the equation 2x^(3)x^(2)+x-1=0 then alpha^(2)+beta^(2)+gamma^(2)=