Home
Class 12
MATHS
If al the roots oif z^3+az^2+bz+c=0 are ...

If al the roots oif `z^3+az^2+bz+c=0` are of unit modulus, then (A) `|a|le3` (B) `|b|le3` (C) `|c|=1` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If all the roots of z^(3)+az^(3)+bz+c=0 are of unit modulus,then

If all the roots of z^3-az^2+bz+c=0 are of unit modulus, then (A) |3-4i+b|gt8 (B) |c|ge3 (C) |3-4i+a|le8 (D) none of these

If all the roots of the equation z^(4)+az^(3)+bz^(2)+cz+d=0(a,b,c,d in R) are of unit modulus,then

If| ax^2 + bx+c | le 1 for all x in [0, 1] ,then (A) |a| le 8 (B) |b| le 8 (C) |c| le 1 (D) |a| + |b| + |c| le 17

The value of (z + 3) (barz + 3) is equivlent to (A) |z+3|^(2) (B) |z-3| (C) z^2+3 (D) none of these

If for the matrix A ,\ A^3=I , then A^(-1)= A^2 (b) A^3 (c) A (d) none of these

If the roots of x^(2)-bx+c=0 are two consecutive integers,then b^(2)-4c is 0(b)1 (c) 2 (d) none of these

If C={z:Re[(3+4i)z]=0} thenthe number of elements in the set BcapC is (A) 0 (B) 1 (C) 2 (D) none of these

If the two equations ax^(2)+bx+c=0 and 2x^(2)-3x+4=0 have a common root then (A) 6a=4b=-3c(B)3a=-4b=3c(C)6a=-4b=3c (D) none of these

For a complex number Z, if all the roots of the equation Z^3 + aZ^2 + bZ + c = 0 are unimodular, then