Home
Class 12
MATHS
Let alpha+iotabeta ,alpha,betaepsilonR b...

Let `alpha+iotabeta` ,`alpha,betaepsilonR` be a root of `x^3+qx+r=0`If `gamma` be a real root of equation `x^3+qx+r=0` then `gamma` (A) `-2alpha` (B) `alpha` (C) `2alpha` (D) `-alpha`

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta, gamma are roots of equation x^(3)-x-1=0 then the value of sum(1+alpha)/(1-alpha) is :

If alpha,beta are the roots of x^(2)-px+r=0 and alpha+1,beta-1 are the roots of x^(2)-qx+r=0 ,then r is

If alpha. beta are the roots of x^(2)+bx+c=0 and alpha+h,beta+h are the roots of x^(2)+qx+r=0 then h=

If alpha and beta are the roots of x^(2)+bx+c=0 and alpha+k and beta+k are the roots of x^(2)+qx+r=0 then k=

If alpha,beta are the roots of the equation x^(2)+px+1=0 gamma,delta the roots of the equation x^(2)+qx+1=0 then (alpha-gamma)(alpha+delta)(beta-gamma)(beta+delta)=

If alpha,beta,gamma are the roots of the equation x^(3)-px^(2)+qx-r=0 then the value of sum alpha^(2)beta=

Let alpha+ibeta,alpha, beta epsilon R , be a root of the equation x^(3)+qx+r=0p,q,r epsilonR . Find a real cubic equation, independent of alpha and beta , whose one root 2 alpha .

alpha,beta be the roots of the equation x^(2)-px+r=0 and (alpha)/(2),2 beta be the roots of the equation x^(2)-qx+r=0 then value of r is