Home
Class 12
MATHS
If a , b , c , are the sides of a triang...

If `a , b , c ,` are the sides of a triangle `A B C` such that `x^2-2(a+b+c)x+3lambda(a b+b c+c a)=0` has real roots, then (2006, 3M) `lambda<4/3` (b) `lambda>5/3` `lambda(4/3,5/3)` (d) `lambda(1/3,5/3)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,c are the sides of a triangle ABC such that x^(2)-2(a+b+c)x+3 lambda(ab+bc+ca)=0 has real roots.then

If a,b,c, are the sides of a triangle ABC such that x^(2)-2(a+b+c)x+3 lambda(ab+bc+ca)=0 has real roots,then (a)lambda (5)/(3)(c)lambda in((4)/(3),(5)/(3)) (d) lambda in((1)/(3),(5)/(3))

Let a,b,c be the sides of a triangle. No two of them are equal and lambda in R If the roots of the equation x^2+2(a+b+c)x+3lambda(ab+bc+ca)=0 are real, then (a) lambda 5/3 (c) lambda in (1/5,5/3) (d) lambda in (4/3,5/3)

Let a,b,c be the sides of a triangle,where a!=b!=c and lambda in R. If the roots of the equation x^(2)+2(a+b+c)x+3 lambda(ab+bc+ca)=0 are real.Then a.lambda (5)/(3) c.lambda in((1)/(3),(5)/(3)) d.lambda in((4)/(3),(5)/(3))

If a

For all lambda in R , The equation ax^2+ (b - lambda)x + (a-b-lambda)= 0, a != 0 has real roots. Then

If the points A(lambda, 2lambda), B(3lambda,3lambda) and C(3,1) are collinear, then lambda=

If three angles A,B,C are such that cos A+ cos B+cos C=0 and if lambda cos A cos B cos C=cos3A+cos3B+cos3C ,then value of lambda is :

If a