Home
Class 12
MATHS
A square matix A is called idempotent if...

A square matix A is called idempotent if (A) `A^2=0` (B) `A^2=I` (C) `A^2=A` (D) `2A=I`

Promotional Banner

Similar Questions

Explore conceptually related problems

A square matix AS is a called singular if det A is (A) negative (B) zero (C) positive (D) non-zero

If B is an idempotent matrix, and A=I-B , then

For the matrix A=[(1,1,0),(1,2,1),(2,1,0)] which of the following is correct? (A) A^3+3A^2-I=0 (B) A^3-3A^2-I=0 (C) A^3+2A^2-I=0 (D) A^3-+A^2-+I=0

If A and B are square matices of the same order such that A^2=A,B^2=B,AB=BA=0 then (A) AB^2=0 (B) (A+B)^2=A+B (C) (A-B)^2=A+B (D) none of these

If A=[(2,-1),(-1,2)] and i is the unit matrix of order 2, then A^2 is equal to (A) 4A-3I (B) 3A-4I (C) A-I (D) A+I

If B is an idempotent matrix,and A=I-B then a.A^(2)=A b.A^(2)=I c.AB=O d.BA=O

If for a square matrix A,A^2=A then |A| is equal to (A) -3 or 3 (B) -2 or 2 (C) 0 or 1 (D) none of these