Home
Class 12
MATHS
Rank of a non zero matrix is always (A) ...

Rank of a non zero matrix is always (A) 0 (B) 1 (C) `gt1` (D) `gt0`

Promotional Banner

Similar Questions

Explore conceptually related problems

Rank of a 3*3 matrix C(=AB), found by multiplying a non-zero column matrix A of size 3*1 and a non-zero row matrix B of size 13, is (a) 0 (b) 1 (c) 2 (d) 3

If the equation f(x)= ax^2+bx+c=0 has no real root, then (a+b+c)c is (A) =0 (B) gt0 (C) lt0 (D) not real

If the equation ax^(2)+25x-3c=0 has non real roots and (3c)/4lt(a+b), then c is always (A) Negative (B) 0(C) Non-negative (D) zero

If A=[(costheta, sin theta),(-sintheta, costheta)] then lim_(nrarroo) A^n/n is (where theta epsilon R) (A) an idenity matrix (B) a zero matrix (C) [(1,0),(0,1)] (D) [(0,1),(-1,-0)]

Let A=[(0,0,-1),(0,-1,0),(-1,0,0)] Then only correct statement about the matrix A is (A) A is a zero matrix (B) A^2=I (C) A^-1 does not exist (D) A=(-1)I where I is a unit matrix

|z-i|lt|z+i| represents the region (A) Re(z)gt0 (B) Re(z)lt0 (C) Im(z)gt0 (D) Im(z)lt0

If A and B are independent events such that P(A) gt0, P(B) gt 0 , then