Home
Class 12
MATHS
If A=[(1,1,2),(5,2,6),(-2,-1,-3)] then A...

If `A=[(1,1,2),(5,2,6),(-2,-1,-3)]` then A is (A) nilpotent (B) idempotent (C) symmetric (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

A = [(1,2,3),(1,2,3),(-1,-2,-3)] then A is a nilpotent matrix of index

If A=[(0,2,-3),(-2,0,-1),(3,1,0)] then A is (A) diagonal matrix (B) symmetric matix (C) skew symmetric matrix (D) none of these

Let A = {1,2,3} and R be a relation on A defind as R = {(1,2), (2,3),(1,3)} , then R is (a) reflexive (b) symmetric (c) transtive (d) none of these

A=[[1,1,3],[5,2,6],[-2,-1,-3]] is a nilpotent matrix of index K .Then K=

The matrix A=[(-5,-8,0),(3,5,0),(1,2,-1)] is (A) idempotent matrix (B) involutory matrix (C) nilpotent matrix (D) none of these

If A=[[2,-2,-4],[-1,3,4],[1,-2,-3]] then A is 1) an idempotent matrix 2) nilpotent matrix 3) involutary 4) orthogonal matrix

If A=[[2,-2,-4],[-1,3,4],[1,-2,-3]] then A is 1) an idempotent matrix 2) nilpotent matrix 3) involutary 4) orthogonal matrix

sin^-1 (-1/2)+tan^-1 (sqrt(3))= (A) -pi/6 (B) pi/3 (C) pi/6 (D) none of these

Show that the matrix [{:( 1,1,3),( 5,2,6),( -2,-1,-3):}] is nilpotent matrix of index 3.

Let A={1,\ 2,\ 3} and consider the relation R={(1,\ 1),\ (2,\ 2),\ (3,\ 3),\ (1,\ 2),\ (2,\ 3),\ (1,\ 3)} . Then, R is (a) reflexive but not symmetric (b) reflexive but not transitive (c) symmetric and transitive (d) neither symmetric nor transitive