Home
Class 12
MATHS
The transformation due of reflection of ...

The transformation due of reflection of `(x,y)` through the origin is described by the matrix (A) `[(0,0),(0,0)]` (B) `[(1,0),(0,1)]` (C) `[(0-1,0),(0,-1)]` (D) `[(0,-1),(-1,0)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(1,0),(0,1)] then A^4= (A) [(1,0),(0,1)] (B) [(1,1),(0,10)] (C) [(0,0),(1,1)] (D) [(0,1),(1,0)]

The matrix of the transformation reflection in the line x+y=0 is (A) [(-1,0),(0,-1)] (B) [(1,0),(0,-1)] (C) [(0,1),(1,0)] (D) [(0,-1),(-1,0)]

If A=[(0,1),(1,0)] then A^4 is (A) [(0,0),(1,1)] (B) [(1,1),(0,0)] (C) [(0,1),(1,0)] (D) [(1,0),(0,1)]

The matrix A= [[0,1],[1,0]] is

If A=[(1,0),(1/2,1)] then A^50 is (A) [(1,25),(0,1)] (B) [(1,0),(25,1)] (C) [(1,0),(0,50)] (D) [(1,0),(50,1)]

The matrix [(1,0,0),(0,2,0),(0,0,4)] is a

If for a matrix A,A^2+I=0, where I is an identity matrix then A equals (A) [(1,0),(0,1)] (B) [(-1,0),(0,-1)] (C) [(1,2),(-1,1)] (D) [(-i,0),(0,-i)]

The matrix [{:(1,0,0),(0,2,0),(0,0,4):}] is a

The matrix A={:[(0,1,-1),(-1,0,1),(1,-1,0):}] is a