Home
Class 12
MATHS
If A=[(2,0,0),(0,cos,sinx),(0,-sinx,cosx...

If `A=[(2,0,0),(0,cos,sinx),(0,-sinx,cosx)]` then `(AdjA)^-1=` (A) `1/2A` (B) A (C) 2A (D) 4A

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=f(x)=[(cosx, sinx, 0),(-sinx, cosx,0),(0,0,1)], then the value of A^-1= (A) f(x) (B) -f(x) (C) f(-x) (D) -f(-x)

If A=[{:(cosx,sinx,0),(-sinx,cosx,0),(0,0,1):}] =f(x), then A^(-1) is equal to

If A=[(cosx,sinx),(-sinx,cosx)] and A.(adjA)=k[(1,0),(0,1)] then the value of k is

Let f(x)=[(cosx,-sinx,0),(sinx,cosx,0),(0,0,1)], then (A) (f(x))^2=-I (B) f(x+y)=f(x),f(y) (C) f(x)^-1=f(-x) (D) f(x)^-1=f(x)

If f(x) = [(cos x , - sinx,0),(sinx,cosx,0),(0,0,1)] then show f(x) . f(y) = f(x+y)

F(x)=[[cosx,-sinx,0],[sinx,cosx,0],[0,0,1]] and G(x)=[[cosx,0,sinx],[0,1,0],[-sinx,0,cosx]], then [F(x)G(y)]^(-1) is equal to (A) F(-x)G(-y) (B) F(x-1)G(y-1) (C) G(-y)F(-x) (D) G(y^(-1))F(x^(-1))

The value of |(cos(x-a), cos(x+a), cosx),(sin(x+a), sin(x-a), sinx),(cosatanx, cosacotx, cotx)|= (A) 1 (B) sina cosa (C) 0 (D) sinx cosx

int_(0)^(2pi)(sinx+cosx)dx=