Home
Class 12
MATHS
If A=[(1,1),(1,0)] and n epsilon N then ...

If `A=[(1,1),(1,0)] and n epsilon N` then `A^n` is equal to (A) `2^(n-1)A` (B) `2^nA` (C) `nA` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

The number of terms in the expansion of (x+1/x+1)^n is (A) 2n (B) 2n+1 (C) 2n-1 (D) none of these

If a_n=sum(r=0)^n 1/^nC_r, then sum _(r=0^n r/^nC_r equals (A) (n-1)a_n (B) na_n (C) 1/2na_n (D) none of these

IF A = [(1,0),(1,1)] then for all natural numbers n A^n is equal to (A) [(1,0),(1,n)] (B) [(n,0),(1,1)] (C) [(1,0),(n,1)] (D) none of these

Lt_(nrarroo) {(n!)/(kn)^n}^(1/n), k!=0 , is equal to (A) k/e (B) e/k (C) 1/(ke) (D) none of these

The general solution of the equation 2^(cos2x)=1=3.2^(-sin^2x) is (A) n pi,n epsilon i (B) (n+1/2) pi, n epsilon I (C) (n- 1/2) pi, n epsilon I (D) none of these

If A=[(n,0 ,0),( 0,n,0),( 0, 0,n)] and B=[(a_1,a_2,a_3),(b_1,b_2,b_3),(c_1,c_2,c_3)] , then A B is equal to (A) B (B) n B (C) B^n (D) A+B

S_(n)=[(1)/(1+sqrt(n))+(1)/(2+sqrt(2n))+...+(1)/(n+sqrt(n^(2)))] then (lim_(n rarr oo)S_(n) is equal to (A)log2(B)log4 (C) log 8 (D) none of these

If m ,n in Na n dm^2-n^2=13 ,t h e n(m+1)(n+1) is equal to a. 42 b. 56 c. 50 d. none of these

The value of sum_(r=1)^(n+1)(sum_(k=1)^(k)C_(r-1))( where r,k,n in N) is equal to a.2^(n+1)-2b2^(n+1)-1c.2^(n+1)d. none of these

If A=[(1,2),(0,1)], then A^n= (A) [(1,2n),(0,1)] (B) [(2,n),(0,1)] (C) [(1,2n),(0,-1)] (D) [(1,n),(0,1)]