Home
Class 12
MATHS
If A=[(1,0),(1/2,1)] then A^50 is (A) [(...

If `A=[(1,0),(1/2,1)]` then `A^50` is (A) `[(1,25),(0,1)]` (B) `[(1,0),(25,1)]` (C) `[(1,0),(0,50)]` (D) `[(1,0),(50,1)]`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If P= [(1,0),(1//2,1)] , then P^(50) is "

If A=[(1,2),(0,1)], then A^n= (A) [(1,2n),(0,1)] (B) [(2,n),(0,1)] (C) [(1,2n),(0,-1)] (D) [(1,n),(0,1)]

If [(2,1),(3,2)] A[(-3,2),(5,-3)]=[(1,0),(0,1)] then a is equal to (A) [(0,1),(1,1)] (B) [(1,0),(1,1)] (C) [(1,1),(1,0)] (D) [(1,1),(0,1)]

If A=[(0,1),(1,0)] then A^4 is (A) [(0,0),(1,1)] (B) [(1,1),(0,0)] (C) [(0,1),(1,0)] (D) [(1,0),(0,1)]

If A=[(1,0),(0,1)] then A^4= (A) [(1,0),(0,1)] (B) [(1,1),(0,10)] (C) [(0,0),(1,1)] (D) [(0,1),(1,0)]

If for a matrix A,A^2+I=0, where I is an identity matrix then A equals (A) [(1,0),(0,1)] (B) [(-1,0),(0,-1)] (C) [(1,2),(-1,1)] (D) [(-i,0),(0,-i)]

If A=[(1,a),(0, 1)] , then A^n (where n in N) equals [(1,n a),(0, 1)] (b) [(1,n^2a),(0, 1)] (c) [(1,n a),(0 ,0)] (d) [(n,n a),(0,n)]

The matrix of the transformation reflection in the line x+y=0 is (A) [(-1,0),(0,-1)] (B) [(1,0),(0,-1)] (C) [(0,1),(1,0)] (D) [(0,-1),(-1,0)]

If A=[(1,0),(1/2,1)] then find the value of A^50

If A= [(0,1,1),(0,0,1),(0,0,0)] is a matrix of order 3 then the value of the matrix (I+A)-2A^2(I-A), where I is a unity matrix is equal to (A) [(1,0,0),(1,1,0),(1,1,1)] (B) [(1,-1,-1),(0,1,-1),(0,0,1)] (C) [(1,1,-1),(0,1,1),(0,0,1)] (D) [(0,0,2),(0,0,0),(0,0,0)]