Home
Class 12
MATHS
Let A=[a(ij)](nxxn) be a square matrix a...

Let `A=[a_(ij)]_(nxxn)` be a square matrix and let `c_(ij)` be cofactor of `a_(ij)` in A. If `C=[c_(ij)]`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

Let A=[a_(ij)]_(n xx n) be a square matrix and let c_(ij) be cofactor of a_(ij) in A. If C=[c_(ij)], then

A = [a_(ij)]_(mxx n) is a square matrix , if

A matrix A=[a_(ij)]_(mxxn) is

Let A=[a_(ij)]_(3xx3) be a matrix such that a_(ij)=(i+2j)/(2) where i,j in [1, 3] and i,j inN . If C_(ij) be a cofactor of a_(ij), then the value of a_(11)C_(21)+a_(12)C_(22)+a_(13)C_(23)+a_(21)C_(31)+a_(22)C_(32)+a_(33)C_(33)+a_(31)C_(11)+a_(32)C_(12)+a_(33)C_(13) is equal to

If A=[a_(ij)]_(3xx3) is a scalar matrix such that a_(ij)=5" for all "i=j," then: "|A|=

In square matrix A=(a_(ij)) if i lt j and a_(ij)=0 then A is

If A=(a_(ij)) is a 4xx4 matrix and C_(ij) is the co-factor of the element a_(ij) in Det(A), then the expression a_(11)C_(11)+a_(12)C_(12)+a_(13)C_(13)+a_(14)C_(14) equals-