Home
Class 12
MATHS
If F(alpha)=[(cosalpha, -sinalpha,0),(si...

If `F(alpha)=[(cosalpha, -sinalpha,0),(sinalpha, cosalpha, 0),(0,0,1)] and G(beta)=[(cosbeta, 0, sinbeta),(0, 1, 0),(-sinbeta, 0, cosbeta)], then [F(alpha)G(beta)]^-1` is equal to (A) `F(-alpha)G(-beta)` (B) `G(-beta)F(-alpha0` (C) `F(alpha^-1)G(beta^-1)` (D) `G(beta^-1)F(alpha^-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Let F(alpha)=[{:(cosalpha,-sinalpha,0),(sinalpha,cosalpha,0),(0,0,1):}] and G(beta)=[{:(cosbeta,0,sinbeta),(0,1,0),(-sinbeta,0,cosbeta):}] . Show that [F(alpha).G(beta)]^(-1)=G(-beta).F(-alpha) .

Let F(alpha)=[cos alpha-sin alpha0sin alpha cos alpha0001] and G(beta)=[cos beta0sin beta010-sin beta0cos beta] Show that [F(alpha)]^(-1)=F(-alpha)(ii)[G(beta)]^(-1)=G(-beta)( iii) [F(alpha)G(beta)]^(-1)=G(-beta)F(-alpha)

If F(alpha)=[[cosalpha, -sinalpha, 0], [sinalpha, cosalpha, 0], [0, 0, 1]] , where alphainR , then (F(alpha))^(-1)=

If A(alpha, beta)=[("cos" alpha,sin alpha,0),(-sin alpha,cos alpha,0),(0,0,e^(beta))] , then A(alpha, beta)^(-1) is equal to

Statement 1: If f(alpha)=[[cosalpha,-sinalpha,0],[sinalpha,cosalpha,0],[ 0, 0, 1]],t h e n [F(alpha)]^(-1)=F(-alpha)dot Statement 2: For matrix G(beta)=[[cosbeta,0,sinbeta],[0, 1, 0],[-sinbeta,0,cosbeta]]dot we have [G(beta)]^(-1)=G(-beta)dot

If cos (alpha+beta)=0 , then sin(alpha-beta) canbe reduced to : (a) cosbeta (b) cos2beta ( c) sinalpha (d) sin2alpha

| alpha alpha1 beta F|=(alpha-P)(beta-alpha)

Prove that: |(sinalpha, cosalpha, 1),(sinbeta, cosbeta, 1),(singamma, cosgamma, 1)|=sin(alpha-beta)+sin(beta-gamma)+sin(gamma-alpha)