Home
Class 12
MATHS
Which of the following is a non singular...

Which of the following is a non singular matrix? (A) `[(1,a,b+c),(1,b,c+a),(1,c,a+b)]` (B) `[(1,omega, omega^2),(omega, omega^2,1),(omega^2,1,omega)]` where omega is non real and `omega^2=1` (C) `[(1^2,2^2,3^2),(2^2,3^2,4^2),(3^2,4^2,5^2)]` (D) `[(0,2,-3),(-2,0,5),(3,-5,0)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that det ([1,omega,omega^(2)omega,omega^(2),1omega,omega^(2),1omega^(2),1,omega])=0 where omega is the non-real cube root of unity =0 where omega is

The inverse of the matrix A=|(1,1,1),(1,omega,omega^2),(1,omega^2,omega)|, where omega=e(2pii)/3, is

If omega is cube roots of unity, prove that {[(1,omega,omega^2),(omega,omega^2,1),(omega^2,1,omega)]+[(omega,omega^2,1),(omega^2,1,omega),(omega,omega^2,1)]} [(1),(omega),(omega^2)]=[(0),(0),(0)]

What is the value of |(1,omega,2 omega^(2)),(2,2omega^(2),4 omega^(3)),(3,3 omega^(3),6 omega^(4))| , where omega is the cube root of the unity ?

If omega is a non-real cube root of unity, then (1+2omega+3omega^2)/(2+3omega+omega^2)+(2+3omega+omega^2)/(3+omega+2omega^2) is equal to

If omega is a cube root of unity, then |(1-i,omega^2, -omega),(omega^2+i, omega, -i),(1-2i-omega^2, omega^2-omega,i-omega)|= (A) -1 (B) i (C) omega (D) 0

The value of (1+omega^(2)+2 omega)^(3n)-(1+omega+2 omega^(2))^(3n) is