Home
Class 12
MATHS
If I= [[1,0],[0,1]] , J = [[0,1],[-1,0]]...

If `I= [[1,0],[0,1]] , J = [[0,1],[-1,0]] and B = [[costheta, sintheta],[-sintheta, costheta]] ` , then B= (A) `Icostheta+Jsintheta` (B) `Icostheta-Jsintheta` (C) `Isintheta+Jcostheta` (D) `-Icostheta+Jsintheta`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[costheta, sintheta], [-sintheta, costheta]] , then |A^(-1)|=

If I=[(1 ,0),( 0, 1)] , J=[(0, 1),(-1 ,0)] and B=[(costheta,sintheta),(-sintheta,costheta)] , then B equals a) Icostheta+Jsintheta (b) Isintheta+Jcostheta (c) Icostheta-Jsintheta (d) Icostheta+Jsintheta

If A=[(costheta,-sintheta),(sintheta,costheta)] " then " A^(-1) =?

If A={:[(costheta,-sintheta),(-sintheta,costheta)]:}, and AB=BA=I" then "B=

If A=[(costheta,-sintheta,0),(sintheta,costheta,0),(0,0,1)] , then adj A equals to

If sintheta-costheta=1 ,then find sintheta.costheta

Show that costheta [[costheta, sintheta],[-sintheta, cos theta]] + sin theta [[sintheta ,-cos theta],[costheta, sin theta]] =1

If Sintheta + Costheta = 1 Sintheta - Costheta = ?

If sintheta + 2 costheta=1 ,then prove that 2sintheta-costheta=2 .

(1+costheta)/(sintheta)=?