Home
Class 12
MATHS
If A and B are any 2xx2 matrices then de...

If A and B are any `2xx2` matrices then `det(A+B)=0` implies (A) `detA+detB=0` (B) `detA=0or detB=0` (C) `AB=0rarr|A|=0 and |B|=0` (D) `AB=0rarrA=0 or B=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A dn B be 3xx3 matrices the AB=0 implies (A) A=0 or B=0 (B) A=0 and B=0 (C) |A|=0 or |B|=0 (D) |A|=0 and |B|=0

A and B be 3xx3 matrices such that AB+A=0 , then

If A and B are square matrices of order 3 then (A) AB=0rarr|A|=0 or |B|=0 (B) AB=0rarr|A|=0 and |B|=0 (C) Adj(AB)=Adj A Adj B (D) (A+B)^-1=A^-1+B^-1

If A and B are square matrices of the same order then (A+B)^2=A^2+2AB+B^2 implies (A) AB=0 (B) AB+BA=0 (C) AB=BA (D) none of these

If A and B are any two square matrices of the same order then (A) (AB)^T=A^TB^T (B) (AB)^T=B^TA^T (C) Adj(AB)=adj(A)adj(B) (D) AB=0rarrA=0 or B=0

If A is a 3xx3 matrix such that det.A=0, then

A and B are square matrices such that det. (A)=1, B B^(T)=I , det (B) gt 0 , and A( adj. A + adj. B)=B. AB^(-1)=

Consider the following statements in respect of the square matrices A and B of same order: 1. A and B are non-zero and AB = 0 rarr either |A| = 0 or |B| = 0 2. AB = 0 rarr A = 0 or B = 0 Which of the above statements is/are correct ?

If A and B are two matrices such that AB=A and BA=B, then B^(2) is equal to (a) B( b) A(c)1(d)0