Home
Class 12
MATHS
If A=[(1,0),(0,1)] then A^4= (A) [(1,0),...

If `A=[(1,0),(0,1)]` then A^4= (A) `[(1,0),(0,1)]` (B) `[(1,1),(0,10)]` (C) `[(0,0),(1,1)]` (D) `[(0,1),(1,0)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(1,2),(0,1)], then A^n= (A) [(1,2n),(0,1)] (B) [(2,n),(0,1)] (C) [(1,2n),(0,-1)] (D) [(1,n),(0,1)]

If A=[(0,1),(1,0)] then A^4 is (A) [(0,0),(1,1)] (B) [(1,1),(0,0)] (C) [(0,1),(1,0)] (D) [(1,0),(0,1)]

If A=[(1,0),(1/2,1)] then A^50 is (A) [(1,25),(0,1)] (B) [(1,0),(25,1)] (C) [(1,0),(0,50)] (D) [(1,0),(50,1)]

The matrix X in the equation AX=B, such that A= [(1,3),(0,1)] and B= [(1,-1),(0,1)] is given by (A) [(1,0),(-3,1)] (B) [(1,-4),0,1)] (C) [(1,-3),(0,1)] (D) [(0,-1),(-3,1)]

If [(2,1),(3,2)] A[(-3,2),(5,-3)]=[(1,0),(0,1)] then a is equal to (A) [(0,1),(1,1)] (B) [(1,0),(1,1)] (C) [(1,1),(1,0)] (D) [(1,1),(0,1)]

If I=[[1,0],[0,1]] , then I^4=

The matrix of the transformation reflection in the line x+y=0 is (A) [(-1,0),(0,-1)] (B) [(1,0),(0,-1)] (C) [(0,1),(1,0)] (D) [(0,-1),(-1,0)]

if A=[[1,0],[0,1]] , then A^(-1) IS

The transformation due of reflection of (x,y) through the origin is described by the matrix (A) [(0,0),(0,0)] (B) [(1,0),(0,1)] (C) [(0-1,0),(0,-1)] (D) [(0,-1),(-1,0)]