Home
Class 12
MATHS
If A=[(1,2),(4,1)] , then A^-1= (A) [(-1...

If `A=[(1,2),(4,1)] , then A^-1=` (A) `[(-1,-2),(4,1)]` (B) `1/7 [(1,2),(-4,-1)]` (C) `1/7[(-1,-2),(4,1)]` (D) `1/9[(1,2),(4,1)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[{:(1,2),(4,1):}] , then find A^(2)+2A+7I .

Multiple inverse of the matrix [(2,1),(7,4)] is (A) [(4,-1),(7,-2)] (B) [(-4,-1),(7,-2)] (C) [(4,-1),(7,2)] (D) [(4,-1),(-7,-2)]

If A=[[1,2,3]], B=[(-5,4,0),(0,2,-1),(1,-3,2)] then (A) AB=[(-2),(-1),(4)] (B) AB=[-2,-1,4] (C) AB=[4,-1,2] (D) AB=[(-5,4,0),(0,4,-2),(3,-9,6)]

If A=[(1,3),(2,4)] and (AB)^(-1)=[((-1)/(2),(1)/(2)),((1)/(4),0)] , then B^(-1). A^(-1)=

If A = [(2,2,1), (1,3,1), (1,2,2)] then A^-1+(A-5I) (AI)^2 = (i) 1/ 5 [[4,2, -1], [-1,3,1], [-1,2,4]] (ii) 1/5 [[4, -2, -1], [-1, 3, -1], [-1, -2,4]] (iii) 1/3 [[4,2, -1], [-1,3,1], [-1,2,4]] (iv) 1/3 [[4, -2, -1], [-1,3, -1], [-1, -2,4]]

If {[(5,1,4),(7,6,2),(1,3,5)][(1,6,-7),(6,2,4),(-7,4,3)][(5,7,1),(1,6,3),(4,2,5)]}^(2020)=[(a_(1),a_(2),a_(3)),(b_(1),b_(2),b_(3)),(c_(1),c_(2),c_(3))] , then the value of 2|a_(2)-b_(1)|+3|a_(3)-c_(1)|+4|b_(3)-c_(2)| is equal to

(7)/(11)-"[1 (1)/(2)-[(1)/(2)+(1(3)/(4)-(1)/(2)+(1)/(3))]]

1 4/(8)-:1(2)/(8)xx1(2)/(4)+2(1)/(2)-1(1)/(4)

If A=[[1,-12,-1]],B=[[x,1y,-1]] and A^(2)+B^(2)=(A+B)^(2) then (x,y)=,(A)(1,4)(B)(2,1)(C)(3,3)(D)(4,1)