Home
Class 12
MATHS
Value of |(1,a,a^2),(1,b,b^2),(1,c,c^2)|...

Value of `|(1,a,a^2),(1,b,b^2),(1,c,c^2)|` is (A) `(a-b)(b-c)(c-a)` (B) `(a^2-b^2)(b^2-c^2)(c^2-a^2)` (C) `(a-b+c)(b-c+a)(c+a-b)` (D) none of these

Text Solution

AI Generated Solution

Doubtnut Promotions Banner Mobile Dark
|

Similar Questions

Explore conceptually related problems

Prove that |(1,a,a^2),(1,b,b^2),(1,c,c^2)|=(a-b)(b-c)(c-a)

Show that |[1,a,a^2],[1,b,b^2],[1,c,c^2]|=(a-b)(b-c)(c-a)

1,1,1a,b,ca^(2),b^(2),c^(2)]|=(a-b)(b-c)(c-a)

The value of the determinant |(1,a,a^2-bc),(1,b,b^2-ca),(1,c,c^2-ab)| is (A) (a+b+c),(a^2+b^2+c^2) (B) a^3+b^3+c^3-3abc (C) (a-b)(b-c)(c-a) (D) 0

Show that |(1,1,1), (a,b,c),(a^2,b^2,c^2)|=(a-b)(b-c)(c-a)

([1,1,1a,b,ca^(2),b^(2),c^(2)])=(a-b)(b-c)(c-a)

The value of the determinant |(k a, k^2+a^2, 1),(k b, k^2+b^2, 1),(k c, k^2+c^2, 1)| is (A) k(a+b)(b+c)(c+a) (B) k a b c(a^2+b^(2)+c^2) (C) k(a-b)(b-c)(c-a) (D) k(a+b-c)(b+c-a)(c+a-b)

[[a,a^(2),(b+c)b,b^(2),(a+c)c,c^(2),(a+b)]]=(b-c)(c-a)(a-b)(a+b+c)

|(1,a^(2),a^(4)),(1,b^(2),b^(4)),(1,c^(2),c^(4))|=(a+b)(b+c)(c+a)|(1,1,1),(a,b,c),(a^(2),b^(2),c^(2))|

Prove: |(1,b+c ,b^2+c^2),( 1,c+a ,c^2+a^2),( 1,a+b ,a^2+b^2)|=(a-b)(b-c)(c-a)