Home
Class 12
MATHS
If A=[(0,-1,2),(1,0,3),(-2,-3,0)], then ...

If `A=[(0,-1,2),(1,0,3),(-2,-3,0)], then A+2A^t` equals (A) a (B) `-A^t` (C) `A^t` (D) `2A^2`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[2,-1,2],[1,3,-4]],B=[[1,-2],[-3,0],[5,4]] then verify that (AB)^(T)=B^(T)A^(T)

Prove that A=[(0,1,2),(-1,0,3),(-2,-3,0)] is a skew symmetric matrix as A^T =-A .

If A^T=[(-2,3),(1,2)] and B =[(-1,0),(1,2)] ,then find (A +2B)^T .

if A=[{:(2,1),(0,3),(1,-1):}] and B=[{:(0,3,5),(1,-7,2):}] , then verify (BA)^(T) = A^(T)B^(T) .

If A=[[7,-2],[-1,2],[5,3]] and B=[[-2,-1],[4,2],[-1,0]] then find AB^(T) and BA^(T)

If A=[[-2,1],[5,0],[-1,4]],B=[[-2,3,1],[4,0,2]] then find 2A+B^T

If A=[(sqrt2,1),(-1,sqrt2)],B=[(1,0),(0,1)], C=ABA^T,X=A^TC^2A then det (x) is equal to

If x=at^(2),y=2at, then (d^(2)y)/(dx^(2)) is equal to ( a )-(1)/(t^(2))( b) (1)/(2at^(2))(c)-(1)/(t^(3)) (d) (1)/(2at^(3))

" If "A=[[1,2],[3,4],[5,6]],B=[[2,3,7],[1,0,3]]" verify that "(AB)^(T)=B^(T)A^(T)

If A=[[1,0,1],[0,2,0],[1,-1,4]],A=B+C,B=B^(T) and C=-C^(T) , then C=