Home
Class 12
MATHS
The matrix X in the equation AX=B, such ...

The matrix `X` in the equation `AX=B,` such that` A= [(1,3),(0,1)] and B= [(1,-1),(0,1)]` is given by (A) `[(1,0),(-3,1)]` (B) `[(1,-4),0,1)]` (C) `[(1,-3),(0,1)]` (D) `[(0,-1),(-3,1)]`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(1,0),(0,1)] then A^4= (A) [(1,0),(0,1)] (B) [(1,1),(0,10)] (C) [(0,0),(1,1)] (D) [(0,1),(1,0)]

If A=[(0,1),(1,0)] then A^4 is (A) [(0,0),(1,1)] (B) [(1,1),(0,0)] (C) [(0,1),(1,0)] (D) [(1,0),(0,1)]

If [(2,1),(3,2)] A[(-3,2),(5,-3)]=[(1,0),(0,1)] then a is equal to (A) [(0,1),(1,1)] (B) [(1,0),(1,1)] (C) [(1,1),(1,0)] (D) [(1,1),(0,1)]

If A = [(2,4),(1,3)] and B = [(1,1),(0,1)] then find (A^(-1)B^(-1))

If A = [(0,1),(2,3),(1,-1)]and B = [(1,2,1),(2,1,0)] , then find (AB)^(-1)

The matrix A satisfying the equation [(1,3),(0,1)]A=[(1,1),(0,-1)] is

The matrix A satisfying A[(1,5),(0,1)]=[(3,-1),(-1,4)] is

If A= [(3,1),(4,0)] and B=[(4,0),(2,5)] then verify that (AB)^(-1)= B^(-1) A^(-1)

The matrix of the transformation reflection in the line x+y=0 is (A) [(-1,0),(0,-1)] (B) [(1,0),(0,-1)] (C) [(0,1),(1,0)] (D) [(0,-1),(-1,0)]

If A=[(1,0),(1,1)], B=[(2,0),(1,1)] and C=[(-1,2),(3,1)], show that