Home
Class 12
MATHS
If the matrix AB=0 then (A) A=0 or B=0 (...

If the matrix AB=0 then (A) `A=0 or B=0` (B) `A=0 and B=0` (C) It is not necessary that either A=0 or B=0 (D) `A!=0,B!=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A dn B be 3xx3 matrices the AB=0 implies (A) A=0 or B=0 (B) A=0 and B=0 (C) |A|=0 or |B|=0 (D) |A|=0 and |B|=0

If A=[(1,0,),(2,0)] and B=[(0,0),(1,12)] then= (A) AB=0, BA=0 (B) AB=0,BA!=0 (C) AB!=0,BA=0 (D) AB!=0,BA!=)

If A and B are any 2xx2 matrices then det(A+B)=0 implies (A) detA+detB=0 (B) detA=0or detB=0 (C) AB=0rarr|A|=0 and |B|=0 (D) AB=0rarrA=0 or B=0

Consider the following statements in respect of the square matrices A and B of same order: 1. A and B are non-zero and AB = 0 rarr either |A| = 0 or |B| = 0 2. AB = 0 rarr A = 0 or B = 0 Which of the above statements is/are correct ?

If A and B are square matrices of order 3 then (A) AB=0rarr|A|=0 or |B|=0 (B) AB=0rarr|A|=0 and |B|=0 (C) Adj(AB)=Adj A Adj B (D) (A+B)^-1=A^-1+B^-1

If the probability for A to fail in an examination is 0.2 and that for B is 0.3, then the probability that either A or B fails, is (A) 0.38 (B) 0.44 (C) 0.50 (D) 0.94

If a\ a n d\ b are two numbers such that a b\ =\ 0 , then (a) a\ =\ 0\ a n d\ b\ =\ 0 (b) a\ =\ 0\ or\ b\ =\ 0 (c) a\ =\ 0\ a n d\ b!=0 (d) b\ =\ 0\ a n d\ a!=0

The roots of the equation ax^2+bx + c = 0 will be imaginary if, A) a gt 0 b=0 c lt 0 B) a gt 0 b =0 c gt 0 (C) a=0 b gt 0 c gt 0 (D) a gt 0, b gt 0 c =0

If the lines ax+by+c=0, bx+cy+a=0 and cx+ay+b=0 (a, b,c being distinct) are concurrent, then (A) a+b+c=0 (B) a+b+c=0 (C) ab+bc+ca=1 (D) ab+bc+ca=0