Home
Class 12
MATHS
If A=[(1,2,2),(2,1,2),(2,2,1)] then (A) ...

If `A=[(1,2,2),(2,1,2),(2,2,1)]` then (A) `A^-1= 1/5(A-4I_3)` (B) `A^2-4A-5I_3=0` (C) `A^2` is invertible (D) `A^3` is non invertible

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=|(1,2,2),(2,1,2),(2,2,1)|, verifty that A^2-4A-5I-5I=0

If A=|{:(1,2,2),(2,1,2),(2,2,1):}| , then show that A^(2)-4A-5I_(3)=0 . Hemce find A^(-1) .

Let A=[1 2 2 2 1 2 2 2 1] . Then A^2-4A-5I_3=O b. A^(-1)=1/5(A-4I_3) c. A^3 is not invertible d. A^2 is invertible

If A=[(1, 2, 0 ),(3,-4, 5),( 0,-1, 3)] , compute A^2-4A+3I_3 .

If [(1,a,2),(1,2,5),(2,1,1)] is non invertible then a= (A) 2 (B) 1 (C) 0 (D) -1

If A=[(5,2),(-1,2)] and I=[(1,0),(0,1)] show that : (A-3I)(A-4I)=O

A=[{:(1,0,k),(2, 1,3),(k,0,1):}] is invertible for

For the matrix A=[(1,1,0),(1,2,1),(2,1,0)] which of the following is correct? (A) A^3+3A^2-I=0 (B) A^3-3A^2-I=0 (C) A^3+2A^2-I=0 (D) A^3-+A^2-+I=0