Home
Class 12
MATHS
Prove that the function defined as, F(x)...

Prove that the function defined as, F(x) = {`e^(-sqrt(|ln{x}|)) - {x}^(sqrt(1/(|ln{x}|)))` where ever it exists otherwise {x}, f(x) is odd as well as even.

Promotional Banner

Similar Questions

Explore conceptually related problems

The function f (x) = log (x + sqrt(x^2 +1)) is

The function f (x) = log (x+ sqrt(x^(2) +1)) is-

The function f(x) = sin| log (x + sqrt(x^2 + 1)) | is :

The function f(x)= sin | log (x+ sqrt(x^(2) +1)) | is-

The function f(x)= sin | log (x+ sqrt(x^(2) +1)) | is-

The function f(x) = sec[log(x + sqrt(1+x^2))] is

The function f(x) = sec[log(x + sqrt(1+x^2))] is

The function f(x) = sec[log(x + sqrt(1+x^2))] is

The function f(x) = sec[log(x + sqrt(1+x^2))] is