Home
Class 12
MATHS
If A=[(0,sin alpha, sinalpha sinbeta),(-...

If `A=[(0,sin alpha, sinalpha sinbeta),(-sinalpha, 0, cosalpha cosbeta),(-sinalpha sinbeta, -cosalphacosbeta, 0)]` then (A) `|A|` is independent of `alpha and beta` (B) `A^-1` depends only on beta (C) `A^-1` does not exist (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If cosalpha+cosbeta=0=sinalpha+sinbeta , then cos2alpha+cos2beta=?

If cos alpha+cos beta=0=sin alpha+sinbeta, then cos2alpha+cos 2beta=

(sinalpha cos beta+cos alpha sin beta)^2+(cos alpha cos beta-sin alpha sin beta)^2=1

Evaluate : Delta=|{:(0,sinalpha,-cosalpha),(-sinalpha,0,sinbeta),(cosalpha,-sinbeta,0):}| .

The determinant D=|{:(cos(alpha+beta),-sin(alpha+beta),cos2beta),(sinalpha,cosalpha,sinbeta),(-cosalpha,sinalpha,cosbeta):}| is independent of :-

If sinalpha+sin beta=a and cos alpha+cos beta=b,then sin(alpha+beta)=

Ecaluate [{:(cosalphacosbeta,cosalphasinbeta,-sinalpha),(-sinbeta,cosbeta,0),(sinalphacosbeta,sinalphasinbeta,cosalpha):}]

If cosalpha+cosbeta=0=sinalpha+sinbeta , then prove that cos2alpha +cos2beta=-2cos(alpha +beta) .