Home
Class 12
MATHS
If A= [(1,0),(1,1)] then (A) A^-n=[(1,0)...

If `A= [(1,0),(1,1)]` then (A) `A^-n=[(1,0),(-n,1)]`,`n epsilon N` (B) `lim_(n rarr 00)1/n^2 A^-n = [(0,0),(0,0)]` (C) `lim_(nrarroo)1/n A^-n = [(0,0),(-1,0)]` (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(n rarr0)n*sin(1/n)

lim_(n rarr0)(cos n)/(n+1)

(2) lim_(n rarr0) (n!sin x)/(n)

lim_ (n rarr0) (sin ^ (2) n) / (n ^ (2))

Let A=[[1,01,1]]. Then which of following is not true? lim_(n rarr oo)(1)/(n^(2))A^(-n)=[[0,0-1,0]] b.lim_(n rarr oo)(1)/(n)A^(-n)=[[0,0-1,0]]A^(-n)=[[1,0-n,1]]AA n!=N d.none of these

lim_(n rarr0)((1+cos n)/(n^(2)))

IF A = [(1,0),(1,1)] then for all natural numbers n A^n is equal to (A) [(1,0),(1,n)] (B) [(n,0),(1,1)] (C) [(1,0),(n,1)] (D) none of these

If A=[{:(,1,a),(,0,1):}] then find lim_(n-oo) (1)/(n)A^(n)

If A=[[1,1],[0,1]] , prove that A^n=[[1,n],[0,1]] for all n epsilon N

lim_(n rarr0)((n-1+cos n)/(n))^(1/n)