Home
Class 12
MATHS
If A=[(1,3),(3,4)] and A^2-xA-I=0 then ...

If `A=[(1,3),(3,4)] and A^2-xA-I=0` then find x.

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[(0,2),(x,-1)] and A(A^3+3I)=2I then find value of x

If A=[(2, 0, 1 ),(2, 1, 3),( 1,-1, 0)] , find A^2-5A+4I and hence find a matrix X such that A^2-5A+4I+X=O .

If A=[(3,-2),(4,-2)] and I=[(1,0),(0,1)] , find k so that A^(2)=kA-2I .

If A={:[(2,1),(0,3)]:}andf(x)=x^(2)-4x+3 , then find f(A).

If A=[[2,3],[4,-1]] and B=[[3,0],[4,5]] then find (i) 3A+2B and (ii) 5A-3B

"If A" = [{:(1, 2), (1, 3):}] , then find A^(-1) + A . (a) I (b) 2I (c) 3I (d) 4I

If A = [(1,0,1),(0,2,3),(1,2,1)]and B = [(1,2,3),(1,1,5),(2,4,7)] , then find the matrix X such that XA = B

if A[{:(1,3,2),(2,0,3),(1,-1,1):}], then find A^(3)-2A^(2)+A-I_(3).

if A=[{:(4,0,-3),(1,2,0):}]and B=[{:(2,1),(1,-2),(3,4):}]' then find AB and BA.

If A={:((1,2),(3,4)):} and X is a 2 xx2 matrix such that AX = I , find X.