Home
Class 12
MATHS
If A=[(1,0,0),(0,1,1),(0,-2,4)],6A^-1=A^...

If `A=[(1,0,0),(0,1,1),(0,-2,4)],6A^-1=A^2+cA+dI,` then `(c,d)=`

Promotional Banner

Similar Questions

Explore conceptually related problems

If A=[[1,0,0],[0,1,1],[0,-2,4]] and 6A^(-1)=A^2+cA+dI . Then c+d is

A=[(1,0,0),(0,1,1),(0,2,4)]; I=[(1,0,0),(0,1,0),(0,0,1)],A^-1=1/6[A^2+cA+dI], where c,d in R, then pair of values (c,d)

Let A=[(1,0,0),(0,1,1),(0,-2,4)],I=[(1,0,0),(0,1,0),(0,0,1)] and A^-1=[1/6(A^2+cA+dI)] Then value of c and d are (a) (=6,-11) (b) (6,11) (c) (-6,11) (d) (6,-11)

A= [{:( 1,0,0) ,( 0,1,1) , ( 0,-2,4) :}] ,I= [{:( 1,0,0) ,( 0,1,0),( 0,0,1) :}]and A^(-1) =[(1)/(6) (A^(2)+cA +dt)] then , the value of c and d are

If A=([3,0,0],[4,5,0],[2,1,6]) then A^(-1)=

Consider a matrix A=[(0,1,2),(0,-3,0),(1,1,1)]. If 6A^(-1)=aA^(2)+bA+cI , where a, b, c in and I is an identity matrix, then a+2b+3c is equal to

If A=[(2,0,0),(0,cos,sinx),(0,-sinx,cosx)] then (AdjA)^-1= (A) 1/2A (B) A (C) 2A (D) 4A

If A=[(1, 0,0),(0,1,0),(a,b,-1)] and I is the unit matrix of order 3, then A^(2)+2A^(4)+4A^(6) is equal to