Home
Class 12
MATHS
If a,b,c are positive and are the pth, q...

If a,b,c are positive and are the pth, qth and rth terms respectively of a G.P., the the value of `|(loga, p, 1),(logb, q, 1),(logc, r, 1)|=` (A) 1 (B) `pqr(loga+logb+logc)` (C) 0 (D) `a^pb^qc^r`

Promotional Banner

Similar Questions

Explore conceptually related problems

If a,b,and c are positive and are the pth, qth and rth terms respectively of a GP. Show without expanding that |{:(loga,p,1),(logb,q,1),(logc,r,1):}|=0

If a,b,c are positive and ar the p^(th),q^(th),r^(th) terms respectively of a G.P show that, |{:(,log a,p,1),(,log b,q,1),(,log c,r,1):}|=0

If a,b,are positive and are the pth, qthrth terms respectively of a GP then det[[log a,p,1log b,q,1log c,r,1]]=

If l,m,n are the pth, qth, rth terms respectively of a G.P. (l,m,ngt0) then |(logl, p, 1),(logm,1,1),(logn,r,1)| = (A) pqr (B) l+m+n (C) 0 (D) none of these

If a,b,c are respectively the xth, yth and zth terms of a G.P. then the value of (y-z)log a + (z-x)log b+(x-y) logc :

If a , b , c are all positive and are p t h ,q t ha n dr t h terms of a G.P., then that =|loga p1logb q1logc r1|=0

If a,b,c be the pth, qth and rth terms respectively of a H.P., the |(bc,p,1),(ca,q,1),(ab,r,1)|= (A) 0 (B) 1 (C) -1 (D) none of these

If the pth, qth and rth terms of a G.P, are x,y and z repectively, then prove that |{:(logx,p,1),(logy,q,1),(logz,r,1):}|=0