Home
Class 12
MATHS
If x, y, z are not all zero & if ax + ...

If `x, y, z` are not all zero & if `ax + by + cz=0, bx+ cy + az=0 & cx + ay + bz = 0`, then prove that `x: y : z = 1 : 1 : 1` OR `1 :omega:omega^2 OR 1:omega^2:omega` , where `omega` is one ofthe complex cube root of unity.

Promotional Banner

Similar Questions

Explore conceptually related problems

If x,y,z are not all zero & if ax+by+cz=0,bx+cy+az=0&cx+ay+bz=0, then prove that x:y:z=1:1:1OR1:omega:omega^(2)OR1:omega^(2):omega, where omega is one ofthe complex cube root of unity.

If x=p+q,y=p omega+q omega^(2), and z=p omega^(2)+q omega where omega is a complex cube root of unity then xyz=

If x ,\ y , z are not all zero and if a x+b y+c z=0; b x+c y+a z=0; c x+a y+b z=0 Prove that x : y : z=1:1:1\ or\ 1:omega:omega^2or\ 1:omega^2:omegadot

If z^(2)(bar(omega))^(4)=1 where omega is a nonreal complex cube root of 1 then find z .

Evaluate: | (1, 1, 1), (1, omega^2, omega), (1, omega, omega^2)| (where omega is an imaginary cube root unity).

Evaluate |(1,omega,omega^2),(omega,omega^2,1),(omega^2,omega,omega)| where omega is cube root of unity.

find the value of |[1,1,1],[1,omega^(2),omega],[1,omega,omega^(2)]| where omega is a cube root of unity

If z is a complex number satisfying |z-3|<=4 and | omega z-1-omega^(2)|=a (where omega is complex cube root of unity then