Home
Class 12
MATHS
If fr(x),gr(x),hr(x),r=1,2,3 are differe...

If `f_r(x),g_r(x),h_r(x),r=1,2,3` are differentiable function and `y=|(f_1(x), g_1(x), h_1(x)), (f_2(x), g_2(x), h_2(x)),(f_3(x), g_3(x), h_3(x))| then dy/dx= |(f\'_1(x), g\'_1(x), h\'_1(x)), (f_2(x), g_2(x), h_2(x)),(f_3(x), g_3(x), h_3(x))|+ |(f_1(x), g_1(x), h_1(x)), (f\'_2(x), g\'_2(x), h\'_2(x)),(f_3(x), g_3(x), h_3(x))|+|(f_1(x), g_1(x), h_1(x)), (f_2(x), g_2(x), h_2(x)),(f\'_3(x), g\'_3(x), h\'_3(x))|` On the basis of above information, answer the following question: Let `f(x)=|(x^4, cosx, sinx),(24, 0, 1),(a, a^2, a^3)|`, where a is a constant Then at `x= pi/2, d^4/dx^4{f(x)}` is (A) 0 (B) a (C) `a+a^3` (D) `a+a^4`

Promotional Banner

Similar Questions

Explore conceptually related problems

If f_r(x),g_r(x),h_r(x),r=1,2,3 are polynomials such that f_r(a)=g_r(a)=h_r(a),r=1,2,3a n d F(x)=|[f_1(x),f_2(x),f_3(x)],[g_1(x),g_2(x),g_3(x)],[h_1(x),h_2(x),h_3(x)]| then F^(prime)(x)a tx=a is____________________

Let f(x)=x, g(x)=1//x and h(x)=f(x) g(x). Then, h(x)=1, if

If f_(r)(x), g_(r)(x), h_(r) (x), r=1, 2, 3 are polynomials in x such that f_(r)(a) = g_(r)(a) = h_(r) (a), r=1, 2, 3 and " "F(x) =|{:(f_(1)(x)" "f_(2)(x)" "f_(3)(x)),(g_(1)(x)" "g_(2)(x)" "g_(3)(x)),(h_(1)(x)" "h_(2)(x)" "h_(3)(x)):}| then F'(x) at x = a is ..... .

If f_(n)(x),g_(n)(x),h_(n)(x),n=1, 2, 3 are polynomials in x such that f_(n)(a)=g_(n)(a)=h_(n)(a),n=1,2,3 and F(x)=|{:(f_(1)(x),f_(2)(x),f_(3)(x)),(g_(1)(x),g_(2)(x),g_(3)(x)),(h_(1)(x),h_(2)(x),h_(3)(x)):}| . Then, F' (a) is equal to

If f(x) is a twice differentiable function such that f'' (x) =-f,f'(x)=g(x),h(x)=f^2(x)+g^2(x) and h(10)=10 , then h (5) is equal to

Let f,g, h be 3 functions such that f(x)gt0 and g(x)gt0, AA x in R where int f(x)*g(x)dx=(x^(4))/(4)+C and int(f(x))/(g(x))dx=int(g(x))/(h(x))dx=ln|x|+C . On the basis of above information answer the following questions: int f(x)*g(x)*h(x)dx is equal to

Let f be a twice differentiable function such that f''(x)=-f(x), and f'(x)=g(x),h(x)=[f(x)]^(2)+[g(x)]^(2) Find h(10) if h(5)=11

f(x) and g(x) are two differentiable functions in [0,2] such that f(x)=g(x)=0,f'(1)=2,g'(1)=4,f(2)=3,g(2)=9 then f(x)-g(x) at x=(3)/(2) is

f(x) and g(x) are two differentiable functions in [0,2] such that f(x)=g(x)=0,f'(1)=2,g'(1)=4,f(2)=3,g(2)=9 then f(x)-g(x) at x=(3)/(2) is