Home
Class 12
MATHS
If Y = sX and Z = tX, where all the let...

If `Y = sX and Z = tX`, where all the letters denotes the functions of x and suffixes denotes the differentiation wr.t x then prove that `|(X,Y,Z),(X_1,Y_1,Z_1),(X_2,Y_2,Z_2)|=X^3|(s_1,t_1),(s_2,t_2)|`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that : =2|{:(1,1,1),(x,y,rz),(x^(2),y^(2),z^(2)):}|=(x-y)(y-z)(z-x)

Prove that : |{:(1,1,1),(x,y,z),(x^(3),y^(3),z^(3)):}|=(x-y)(y-z)(x+y+z)

If cos^-1 x+cos^-1 y+cos^-1 z=pi and x+y+z= 3/2, then prove that x=y=z

If x^(2)+y^(2)+z^(2)=1 , then what is the value of |{:(1,z,-y),(-z,1,x),(y,-x,1):}|= ?

The values of x, y, z for the equations x-y+z=1, 2x-y=1, 3x+3y-4z=2 are

The distance between the lines x=1-4t, y=2+t, z=3+2t" and "x=1+s, y=4-2s, z=-1+s is

If x : y = 1 : 3, y :z = 5 :k, z : t = 2:5 and t:x = 3:4 , then what is the value of k ?