Home
Class 12
MATHS
The value of sum(r=2)^n (-2)^r|(n-2C(r-...

The value of `sum_(r=2)^n (-2)^r|(n-2C_(r-2),n-2C_(r-1),n-2C_r),(-3,1,1),(2,-1,0)|(n > 2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Evaluate : sum_(r = 1)^(n) ""^(n)C_(r) 2^r

The value of sum_(r=0)^(2n)(-1)^(r)*(""^(2n)C_(r))^(2) is equal to :

Prove that sum_(r=0)^(n)r(n-r)C_(r)^(2)=n^(2)(^(2n-2)C_(n))

det[[ The value of the determinant nC_(r-1),nC_(r),(r+1),n+2C_(r+1)nC_(r),nC_(r+1),(r+2),n+2C_(r+2)nC_(r+1),nC_(r+2),(r+3),n+2C_(r+3)]] is

""^(n-2)C_(r)+2""^(n-2)C_(r-1)+""^(n-2)C_(r-2) equals :

sum_(r=1)^(n)(1)/((r+1)(r+2))*^(n+3)C_(r)=

Let for n in N, f(n)=sum_(r=0)^(n)(-1)^(r)(C_(r)2^(r+1))/((r+1)(r+2))