Home
Class 12
MATHS
If x,y,z are distinct and |(x, x(x^2+1),...

If x,y,z are distinct and `|(x, x(x^2+1), x+1),(y,y(y^2+1), y+1),(z, z(z^2+1), z+1)|=0` then (A) `xyz=0` (B) `x+y+z=0` (C) `xy+yz+zx=0` (D) `x^2+y^2+z^2=1`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x,y,z are different and Delta=|{:(x,x^(2),1+x^(3)),(y,y^(2),1+y^(3)),(z,z^(2),1+z^(3)):}|=0 , show that : (i) 1+xyz=0 (ii) xyz=-1

The value of |{:(x,x^2-yz,1),(y,y^2-zy,1),(z,z^2-xy,1):}| is

If |{:(x,x^2,1+x^3),(y,y^2,1+y^3),(z, z^2,1+z^3):}|=0 then relation of x,y and z is

If |(x, x^2, x^3 +1), (y, y^2, y^3+1), (z, z^2, z^3+1)| = 0 and x ,y and z are not equal to any other, prove that, xyz = -1

Prove the following : |(1,x,x^(2)-yz),(1,y,y^(2)-zx),(1,z,z^(2)-xy)|=0 .

If x!=y!=za n d|[x,x^2, 1+x^3],[y ,y^2 ,1+y^3],[z, z^2, 1+z^3]|=0, then the value of x y z is a.1 b. 2 c. -1 d. 2

A plane through the line (x-1)/1=(y+1)/(-2)=z/1 has the equation (A) x+y+z=0 (B) 3x+2y-z=1 (C) 4x+y-2z=3 (D) 3x+2y+z=0

The determinant |[ C(x,1) ,C(x,2), C(x,3)] , [C(y,1) ,C(y,2), C(y,3)] , [C(z,1) ,C(z,2), C(z,3)]|= (i) 1/3xyz(x+y)(y+z)(z+x) (ii) 1/4xyz(x+y-z)(y+z-x) (iii) 1/12xyz(x-y)(y-z)(z-x) (iv) none