Home
Class 12
MATHS
If a!=1, b!=1, c!=1, f(x)= 1/(1-x) and |...

If `a!=1, b!=1, c!=1, f(x)= 1/(1-x) and |(a,1,1),(1,b,1),(1,1,c)|=0 ` then (A) `f(a)+f(b)+f(c)=0` (B) `f(a)+f(b)+f(c)=1` (C) `f(a)+f(b)+f(c)=-1` (D) `f(a)f(b)f(c)=1`

Text Solution

AI Generated Solution

Promotional Banner

Similar Questions

Explore conceptually related problems

Let f(x)=[(cosx,-sinx,0),(sinx,cosx,0),(0,0,1)], then (A) (f(x))^2=-I (B) f(x+y)=f(x),f(y) (C) f(x)^-1=f(-x) (D) f(x)^-1=f(x)

If f(x)=|(log)_(e)x|, then (a) f'(1^(+))=1 (b) f'(1^(-))=-1( c) f'(1)=1(d)f'(1)=-1

If A=f(x)=[(cosx, sinx, 0),(-sinx, cosx,0),(0,0,1)], then the value of A^-1= (A) f(x) (B) -f(x) (C) f(-x) (D) -f(-x)

If f(x)=|(log)_(2)x|, then f(1^(+))=1 (b) f(1^(-))=-1f(1)=1( c) f'(1)=-1

7. If f(x)=|x-a|+|x + b| , x in R,b>a>0 . Then (1) f'(a^+)=1 (2) f'(a^+)=0 (3) f'(-b^ +) = 0 (4) f(-b^+)=1

If f((ax+b)/(x-a))=x, then f^(-1)(x)= (a) x (b) (bx+a)/(x-b)( c) f(x)

If f(x)=|0x-a x-b x+a0x-c x+b x+c0|,t h e n f(x)=0 (b) f(b)=0 (c) f(0)=0 f(1)=0

f(x)=(x)/(x-1) then (f(a))/(f(a+1)) is equal to a.f(-a) b.f(1/a) c.f(a^(2)) d.f (-(a)/(a-1))

If f(x)=tanx and A,B,C are the anlges of /_\ABC, then |(f(A), f(pi/4) f(pi/4)), (f(pi/4), f(B) f(pi/4)), (f(pi/4), f(pi/4) f(C))|= (A) 0 (B) -2 (C) 2 (D) 1