Home
Class 12
MATHS
Let g(x)=|(f(x+alpha), f(x+2a), f(x+3alp...

Let `g(x)=|(f(x+alpha), f(x+2a), f(x+3alpha)), f(alpha), f(2alpha), f(3alpha),(f\'(alpha),(f\'(2alpha), f\'(3alpha))|`, where alpha is a constant then `Lt_(xrarr0(g(x))/x=` (A) 0 (B) 1 (C) -1 (D) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(alpha)=[[1,alpha,alpha^2],[alpha,alpha^2,1],[alpha^2,1,alpha]] then find the value of f(3^(1/3))

int_(0)^((alpha)/3)(f(x))/(f(x)+f((alpha-3x)/3))dx=

If f(x)=alpha x^(n), prove that alpha=(f'(1))/(n)

Let int_(alpha)^( beta)(f(alpha+beta-x))/(f(x)+f(alpha+beta-x))dx=4 then

Let f(x)=(alpha x)/(x+1) Then the value of alpha for which f(f(x)=x is

f(alpha)=f'(alpha)=f''(alpha)=0,f(beta)=f'(beta)=f''(beta)=0 and f(x) is polynomial of degree 6, then

Let f(x)=(alpha x)/(x+1), x ne -1. Then, for what value of alpha " is " f[f(x)]=x ?