Home
Class 12
MATHS
Let f(x) = ax^(2) + bx + c, a, b, c, in ...

Let `f(x) = ax^(2) + bx + c, a, b, c, in R` and equation `f(x) - x = 0` has imaginary roots `alpha, beta`. If r, s be the roots of `f(f(x)) - x = 0`, then `|(2,alpha,delta),(beta,0,alpha),(gamma,beta,1)|` is

Promotional Banner

Similar Questions

Explore conceptually related problems

If alpha, beta, gamma are the roots of x^(3) + ax^(2) + b = 0 , then the value of |(alpha,beta,gamma),(beta,gamma,alpha),(gamma,alpha,beta)| , is

If alpha,beta,gamma are the roots of x^(3)+ax^(2)+bx+c=0 then Sigma((alpha)/(beta)+(beta)/(alpha))=

Let f(x)=ax^(2)+bx+c.g(x)=ax^(2)+qx+r where a,b,c,q,r in R and a<0. if alpha,beta are the roots of f(x)=0 and alpha+delta,beta+delta are the roots of g(x)=0, then

Let f(x)=ax^(2)+bx+c , g(x)=ax^(2)+qx+r , where a , b , c , q , r in R and a lt 0 . If alpha , beta are the roots of f(x)=0 and alpha+delta , beta+delta are the roots of g(x)=0 , then

Let alpha, beta are the roots of f(x)=ax^(2)+ bx +c=0 then quadratic equation whose roots are (alpha)/(1+alpha),(beta)/(1+beta) is

Let f(x)=ax^(2) + bx + c=0 be a quadratic equation and alpha , beta are its roots then f(x-k)=0 is an equation whose roots are

If alpha, beta are roots of ax^(2)+bx+c=0 , then : int((x-alpha)(x-beta))/(ax^(2)+bx+c)dx=

the quadratic equation x^(2)-9x+3=0 has roots alpha and beta. If x^(2)-bx-c=0 has roots alpha^(2) and beta^(2) then (b,c) is

The quadratic equation x^(2)-9x+3=0 has roots alpha and beta.If x^(2)-bx-c=0 has roots alpha^(2)and beta^(2), then (b,c) is