Home
Class 10
MATHS
if y=1/(x^3 +1/(x^3+1/(x^3.................

if `y=1/(x^3 +1/(x^3+1/(x^3................oo))` then `(dy)/(dx)`

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = x + (1)/(x + (1)/( x +...oo)) then (dy)/(dx) =

If y = x + (1)/(x + (1)/( x +...oo)) then (dy)/(dx) =

If y = 1 +(x)/(|__1) +(x^2)/(|__2) +(x^3)/(|__3) + ..........oo then (dy)/(dx) = …………. .

If y=x+(1)/(x+(1)/(x+(1)/(x+...oo)))," prove that "(dy)/(dx)=(y)/((2y-x)).

If y=sqrt(a^(3x+1)+sqrt(a^(3x+1)+sqrt(a^(3x+1)+.........+oo))) then dy/dx=

y=sqrt(a^(3x+1)+sqrt(a^(3x+1)+sqrt(a^(3x+1))+......oo) , then (dy)/(dx)=

If y=(x^((1)/(3))-x^(-(1)/(3))) then (dy)/(dx) is

If y = sqrt(a^(3x + 1) +sqrt(a^(3x + 1)+ sqrt(a^(3x +1) + ...." to "oo))) then (dy)/(dx) =

If y=1+(1)/(x)+(1)/(x^(2))+(1)/(x^(3))+... to oo with |x|>1 then (dy)/(dx)=

If y = 1 +(1)/(x) +(1)/(x^(2)) + (1)/(x^(3)) + ……..+oo with |x| gt 1 then (dy)/(dx) is .